
PNAS  2023  Vol. 120  No. 17  e2217900120� https://doi.org/10.1073/pnas.2217900120   1 of 9

RESEARCH ARTICLE | 

Significance

The United States accounts for a 
large share of global methane 
emissions from the oil/gas 
industry. Analysis of satellite and 
surface observations of 
atmospheric methane reveals 
larger-than-reported year-to-year 
variability of 2010 to 2019 US  
oil/gas methane emissions.  
This variability reflects trends in  
oil/gas production rates, number 
of active wells, and drilling of new 
wells. Emissions surged after 
2017 as production increased. 
The methane intensity from the 
US oil/gas industry (methane 
emitted per unit methane gas 
produced) decreased steadily 
after 2010. Extension of this 
decreasing trend to 2030 (target 
date of the Global Methane 
Pledge) would result in a 32% 
decrease in US oil/gas methane 
emissions and 15% decrease in 
total anthropogenic emissions 
relative to 2019 despite an 
increase in production.
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The United States is the world’s largest oil/gas methane emitter according to current 
national reports. Reducing these emissions is a top priority in the US government’s 
climate action plan. Here, we use a 2010 to 2019 high-resolution inversion of sur-
face and satellite observations of atmospheric methane to quantify emission trends 
for individual oil/gas production regions in North America and relate them to pro-
duction and infrastructure. We estimate a mean US oil/gas methane emission of 
14.8 (12.4 to 16.5) Tg a−1 for 2010 to 2019, 70% higher than reported by the US 
Environmental Protection Agency. While emissions in Canada and Mexico decreased 
over the period, US emissions increased from 2010 to 2014, decreased until 2017, 
and rose again afterward. Increases were driven by the largest production regions 
(Permian, Anadarko, Marcellus), while emissions in the smaller production regions 
generally decreased. Much of the year-to-year emission variability can be explained 
by oil/gas production rates, active well counts, and new wells drilled, with the 2014 
to 2017 decrease driven by reduction in new wells and the 2017 to 2019 surge driven 
by upswing of production. We find a steady decrease in the oil/gas methane intensity 
(emission per unit methane gas production) for almost all major US production 
regions. The mean US methane intensity decreased from 3.7% in 2010 to 2.5% in 
2019. If the methane intensity for the oil/gas supply chain continues to decrease at 
this pace, we may expect a 32% decrease in US oil/gas emissions by 2030 despite 
projected increases in production.

methane | oil/gas emission | inversion | decadal trends | production activity

Atmospheric methane (CH4) is a powerful climate forcer accounting for a third of the 
global temperature rise since the preindustrial era (1). It has a much shorter lifetime than 
carbon dioxide (CO2) and 80 times higher warming potential over a 20-y horizon. 
Mitigation of methane emissions is critical for limiting global warming within 1.5 °C and 
also has cobenefits for public health and food productivity (2). Methane has a range of 
sources including wetlands as the major natural emitter, and agriculture (livestock, rice), 
waste (landfills, wastewater), and fossil fuel exploitation (coal, oil, gas) as the main anthro-
pogenic emitters (3). Curbing methane emissions from the oil/gas industry is of particular 
interest due to its high feasibility and economic benefit (4–8).

The United States is the leading oil/gas methane emitter in the world according to 
United Nations Framework Convention on Climate Change (UNFCCC) reports, with 
a national emission of 8.1 Tg a−1 that accounts for 15% of global oil/gas methane emissions 
for 2019 (9). Oil and gas production in the United States increased by 137% and 88%, 
respectively, from 2005 to 2019 (10, 11). The US Environmental Protection Agency (EPA) 
reports no significant change in its methane emission inventory over that period, reflecting 
improved industry practices and capture of associated gas to offset increasing oil production 
(12). However, top-down estimates from observations of atmospheric methane indicate 
0.4 to 6% a−1 increases in US oil/gas methane emissions over the 2006 to 2017 period 
(13–17) and national emissions about twice higher than given by EPA (5, 15, 16, 18, 19). 
Insufficient accounting of anomalously large sources (the so-called superemitters) has been 
blamed for at least part of the inventory underestimate (5, 20, 21), but there has been 
little study of the factors driving the long-term emission trend.

Here, we conduct an inverse analysis of 2010 to 2019 methane observations from 
satellite and surface sites over North America to determine the annual trends of emissions 
for different oil/gas production regions over that period. We relate the emission trends to 
activity metrics to identify the dominant drivers of oil/gas methane emissions. We also 
report trends in methane intensities, defined as the fraction of gas emitted to the atmos-
phere rather than taken to market, as an indicator of industry practices and of the potential 
to decrease emissions in the future.
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Results

Top-Down 2010 to 2019 Estimates of Oil and Gas Methane 
Emissions. We quantify 2010 to 2019 annual methane 
emissions from the oil/gas industry by inverse analysis of 
atmospheric methane observations from the Greenhouse Gases 
Observing Satellite (GOSAT) satellite instrument (22) and the 
GLOBALVIEWplus CH4 ObsPack dataset of surface (including 
tower) sites (23) (Fig. 1A), making use of the complementarity 
between the two observation platforms (15, 24–26). We use the 
continental-scale GEOS-Chem chemical transport model (27) 
at 0.5° × 0.625° resolution as forward model in the inversion to 
relate emissions to concentrations. The inversion strategy follows 
our previous work which examined national methane emissions 
from all sources for 2010 to 2017 (15), but here we extend it to 
2019 with focus on the oil/gas sector and individual production 
regions. Emissions are optimized by drawing information from 
the observations and prior estimates following the Bayesian 
rule, where the prior estimates are from gridded versions of the 
national anthropogenic inventories reported to the UNFCCC 
(28–30) together with WetCHARTs v1.3.1 (31) for wetlands 
(Fig. 1B and SI Appendix, Fig. S1). The inversion is done for 
individual years in 2010 to 2019, updating boundary conditions 
over the oceans in each year with a consistent global inversion for 
2010 to 2019 (25, 32, 33). The same prior emissions in North 

America are used for all years, effectively assuming no trend as a 
prior assumption. The posterior (optimal) solution for emissions 
on the 0.5° × 0.625° grid is obtained analytically to yield closed-
form error statistics and information content, and to enable 
the construction of an ensemble of solutions using different 
inversion parameter assumptions. Posterior emission estimates 
from a 12-member inversion ensemble with each reporting 
two estimates by different sectoral attribution methods define 
the uncertainty range on the posterior results (SI  Appendix, 
Table  S1). See Materials and Methods for more details on 
inversion procedures, evaluation of posterior emissions, and 
uncertainty analyses.

The inversion returns yearly posterior gridded correction factors 
to the prior emission estimates on the 0.5° × 0.625° grid 
(SI Appendix, Fig. S2). Fig. 1C shows the mean 2010 to 2019 cor-
rections for the oil/gas emission sector, based on the contribution 
from that sector to total prior emissions in each grid cell combined 
with error statistics by sector following Shen et al. (34). The inver-
sion is able in this manner to separate oil/gas emissions and trends 
from those of other sectors (Materials and Methods). It has diffi-
culty in separating oil and gas emissions for some regions and 
therefore we report combined oil/gas emissions. Fig. 2A quantifies 
oil/gas methane emissions for the 18 major production regions in 
North America. The 14 US regions account for, respectively, 60% 

Fig. 1. Application of satellite and surface observations of atmospheric methane to quantify oil/gas emissions and 2010 to 2019 trends. Panel A shows mean 
observed surface methane mixing ratios from in situ surface and tower observations archived in the GLOBALVIEWplus CH4 ObsPack data product (circles), and 
dry column mixing ratios retrieved from the GOSAT satellite instrument and averaged on the 0.5° × 0.625° inversion grid. Panel B shows prior oil/gas emissions 
for the inversion from the spatially gridded versions of the US, Canada, and Mexico official national inventories reported to the United Nations Framework 
Convention on Climate Change (UNFCCC). Panel C shows the posterior corrections to mean 2010 to 2019 oil/gas methane emissions from the inversion, and 
Panel D shows the 2010 to 2019 linear trends in oil/gas emissions. The linear trends are fitted by ordinary least-squares linear regression to the inversion results 
for individual years. Only trends with P-value ≤0.34 are shown.D
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and 80% of the 2019 national oil and gas production, and we will 
see later that they largely determine the year-to-year trend in the 
national oil/gas emissions.

We find significant underestimation in the national inventories 
of 2010 to 2019 oil/gas methane emissions across North America, 
prominently in the central-south and midwestern US, Alberta and 
Saskatchewan in Canada, and the Sureste onshore oil field in 
Mexico. Exceptions are the Marcellus field, which is exclusively 
of gas production, and the Sureste offshore oil field. These results 
are consistent with previous top-down studies (15, 16, 19, 34–37). 
Our best posterior estimate of US oil/gas methane emission aver-
aged over 2010 to 2019 is 14.8 (12.4 to 16.5 from the inversion 
ensemble) Tg a−1, 70% higher than the most recent EPA estimate 
of 8.7 Tg a−1 for the same period (12). Our best posterior estimates 
for Canada and Mexico are 2.6 (2.2 to 3.3) and 1.2 (0.8 to 1.4) 
Tg a−1, 67% and 50% higher, respectively, than their national 
reports. Our inversion results for individual production regions 
in Fig. 2A are generally consistent with reported estimates  
from field campaigns covering different time periods in 2010 to 
2019 and also with an inversion from the higher-resolution 
TROPOspheric Monitoring Instrument (TROPOMI) satellite 
instrument available for 2018 to 2019 (SI Appendix, Table S2). 
Discrepancies may partly reflect differences in observing periods. 
Our estimate of 2010 to 2019 emissions from the Permian (2.1 
Tg a−1) is low compared to other top-down estimates for the 
post-2017 period (2.3 to 3.7 Tg a−1) (19, 37–40) which may reflect 
in part our use of an EPA prior estimate of 0.8 Tg a−1 known to 
be too low (19, 37) and our longer time horizon.

Interpretation of 2010 to 2019 Trends in US Oil/Gas Methane 
Emissions. We now examine the annual trends of oil/gas 
methane emissions over the 2010 to 2019 period as informed 
by our inversion for individual years. Fig. 1D shows the spatial 

distributions of the long-term trends as obtained by ordinary 
least-squares linear regression, and Fig. 2B gives the trends for the 
18 major oil/gas production regions. Trends in oil/gas emissions 
can be clearly separated by the inversion from trends in emissions 
from other sectors (SI Appendix, Fig. S3). We find that oil/gas 
emissions over the 2010 to 2019 period changed by +7% for the 
United States, −23% for Canada, and −60% for Mexico. There are 
large spatial differences in trends between US production regions. 
The top six US production regions with the largest emissions 
including the Permian, Anadarko, Marcellus, Haynesville, and 
Eagle Ford show increasing trends in 2010 to 2019 ranging from 
0.4 to 5% a−1, except for the Barnett which shows a 1.5% a−1 
decrease. Other regions with smaller emissions generally show 
emission decreases. The decreasing trends in Canada may reflect 
the implementation of the Pan-Canadian Framework on Clean 
Growth and Climate Change for reducing methane released 
from the oil/gas sector (41). The decreasing trends in Mexico  
may reflect increasing utilization of associated gas from oil 
production (42).

Fig. 3A shows the year-to-year trends in US oil/gas methane 
emissions over the 2010 to 2019 period as optimized by the base 
inversion. US oil/gas emissions increased from 14.6 Tg a−1 in 2010 
to 15.9 Tg a−1 in 2014, decreased to 13.6 Tg a−1 in 2017, and rose 
again to 15.6 Tg a−1 in 2019. This year-to-year variability is con-
sistent across the inversion ensemble (SI Appendix, Fig. S4). The 
US EPA inventory (12) has considerably less interannual variabil-
ity (8.7 ± 0.1 Tg a−1, mean ± SD for 2010 to 2019). Previous 
top-down studies reported large oil/gas methane emission increases 
for the United States of 6% a−1 for 2008 to 2014 (43) and 3.4% a−1 
for 2005 to 2014 (14), whereas we find 2.4% a−1 for 2010 to 2014. 
Maasakkers et al. (16) reported an increase of only 0.4% a−1 for 
2010 to 2015, which we explain by the steep drop from 2014 to 
2015. Lu et al. (15) reported an increase in oil and decrease in gas 

Fig. 2. Mean oil/gas methane emissions and trends for major production regions in North America, 2010 to 2019. Panel A shows the posterior emissions from 
the inversion compared to the gridded UNFCCC reports. The Inset panel defines the individual regions. Panel B shows the 2010 to 2019 emission trends inferred 
by ordinary least-squares linear regression on the posterior emissions for individual years. The vertical bars represent the uncertainty ranges derived from the 
12-member inversion ensemble with each generating two emission estimates based on different source attribution methods, resulting in 24 estimates in total.D
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emissions for 2010 to 2017 but no significant trends for combined 
oil/gas emissions. The post-2017 emission surge has not been 
reported before to our knowledge.

We find that the interannual variability in the US oil/gas emis-
sions can be largely explained by that in the 14 oil/gas production 
regions shown in Fig. 2 (R2 = 0.74), and half can be explained by 
the top six regions with the largest emissions (R2 = 0.50). We show 
yearly emissions for the top three production regions (Permian, 
Anadarko, and Marcellus) in Fig. 3 and others in SI Appendix, 
Fig. S5. The US oil/gas emission increase in 2010 to 2014 was 
largely driven by the Permian where emissions increased from 1.5 
Tg a−1 in 2010 to 2.7 Tg a−1 in 2014 (Fig. 3B). The Anadarko 
(increasing by 0.7 Tg a−1) and the Marcellus (increasing by 0.3 Tg a−1) 
also contributed. Previous reports of large emissions in the Permian 
focused on the post-2017 period when TROPOMI observations 
became available (20, 37, 38, 40). Our inversion shows that Permian 
emissions were already at current high values by 2014. The national 
decrease in oil/gas emissions for the 2014 to 2017 period reflects a 
combination of trends in the Permian, Anadarko, and Marcellus 

(Fig. 3), while the post-2017 rebound is largely driven by the 
Anadarko, Marcellus, Barnett, and Haynesville. The net near-zero 
decadal trend of US emission in 2010 to 2019 obfuscates these 
subdecadal swings and spatial differences between oil/gas produc-
tion regions as shown in Fig. 2B.

Fig. 3 further shows the relationship between the year-to-year 
variability in oil/gas emissions and different activity metrics. Here, 
we use three metrics: i) oil/gas production rate, ii) counts of active 
wells, and iii) counts of new wells drilled from the Enverus Drilling 
Info database (44). Previous aircraft-based surveys have shown 
strong spatial correlation of emissions with gas production and 
active well pad count in the Fayetteville Shale (45). Oil/gas pro-
duction relates to methane emissions as high production tends to 
increase the number of operating facilities and the gas flowing 
through them. In addition, increase in production may challenge 
the capacity of midstream infrastructure to manage the gas 
flow (46). Omara et al. (47) showed that wells with low produc-
tion can contribute a large proportion of oil/gas emissions, indi-
cating that active well count number should be another predictor 

Fig. 3. 2010 to 2019 trends in oil/gas (O/G) methane emissions in the United States. Posterior emission estimates from the inversion are shown for the contiguous 
United States (Panel A) and for the three major emission regions of the Permian, Anadarko, and Marcellus (Panels B, C, and D) (Fig. 2). Gray shadings represent 
the range from the inversion ensemble; SI Appendix, Fig. S4 shows the trends from each ensemble member to demonstrate the consistency of the year-to-year 
variability across the ensemble. Also shown are trends in oil/gas production (in unit of barrel of oil equivalent, BOE), count of active wells, and count of new 
wells (first reported production year) from the Enverus DrillingInfo (44). These three variables are used in a multiple linear regression model to fit the posterior 
oil/gas emissions, with the coefficient of determination (R2) shown as Inset. SI Appendix, Table S3 gives the detailed results for the regression model. Results for 
smaller oil/gas production regions are shown in SI Appendix, Fig. S5.
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of oil/gas methane emissions. New wells are prone to high meth-
ane emissions due to uncontrolled emissions from exploratory 
drillings, a spike at well completion, and decreasing tank flash 
emissions during the first year of operation (48). We find that the 
number of new wells shows a strong correlation with the annual 
crude oil price from the West Texas Intermediate Cushing 
(WTI-Cushing) oil benchmark (r = 0.93) (49) and with the nat-
ural gas price from the Henry hub (https://www.eia.gov/dnav/ng/
hist/rngwhhdA.htm) of (r = 0.75) (50). Takeaway capacity is also 
a possible predictor for oil/gas methane emissions as shown in a 
recent study of weekly emissions in Permian (51), but data are 
unavailable for 2010 to 2019.

We find that the three metrics of production rates, active well 
counts, and new well counts are complementary and together can 
explain 46% of the year-to-year variability of total US oil/gas 
emissions over the 2010 to 2019 period (Fig. 3A), as derived from 
a multiple linear regression (SI Appendix, Table S3). The explan-
atory power is higher for individual production regions, typically 
60 to 80% (Fig. 3 and SI Appendix, Fig. S5), although the impor-
tance of each metric varies by region indicating differences in 
operating practices. The 2010 to 2014 increase in US oil/gas emis-
sions by 9% was associated with a rise in oil/gas production by 
34%, a rise in the number of active wells by 27%, and a sustained 
drilling of new wells of more than 30,000 a−1 over the period. All 
major oil/gas production regions showed similar behavior. The 
2014 to 2017 drop in US oil/gas methane emissions was associated 
with a 60% reduction in new well development, while total oil/
gas production and number of active wells remained stable. 
Decline in new well development was found in all major produc-
tion regions (Fig. 3). This was likely driven by the drop of annual 
crude oil price by about 50% over the period (49).

The recent 2017 to 2019 emission surge appears to be driven 
by the revival of US oil/gas production which increased by 30% 
in this period. The number of active wells and new wells was 8% 
higher in 2017 to 2019 than the 2015 to 2016 mean, reflecting 
the upswing of oil price. The rise in oil/gas production was mostly 
in the Anadarko, Marcellus, and Haynesville (Fig. 3 and 
SI Appendix, Fig. S5), which accounted for most of the emission 
increase. Post-2017 emission increases in the Permian were weak 
despite large increases in oil/gas production and new well devel-
opment, and this could reflect an increase in pipeline takeaway 
capacity (51).

Decreasing Methane Intensity from US Oil/Gas Production. 
Fig. 4 and SI Appendix, Table S4 show the magnitudes and trends 
of methane intensity, defined as methane emission integrated along 

the oil and gas supply chain per unit of methane gas production. 
This definition follows the US Environmental Defense Fund 
(EDF)  (5, 46) and a number of previous studies (42, 52–54). 
It is similar for production regions to the methane intensity 
defined by the Oil and Gas Climate Initiative as upstream oil/gas 
emissions (from production, processing, and storage) per unit of 
gas marketed, since upstream emissions dominate in production 
regions (55). The methane intensity effectively measures the 
potential for reducing emissions from the oil/gas industry by 
marketing methane rather than emitting it. Some studies report 
methane intensity normalized by combined oil and gas production 
to estimate the amount of gas emitted per unit of total energy 
produced by oil/gas (40, 47, 56). The two definitions of methane 
intensity show similar trends (SI Appendix, Fig. S6). We use the 
first definition of methane intensity in what follows.

We derive a mean methane intensity from the US oil/gas indus-
try of 3.1% averaged over 2010 to 2019 assuming an average 
methane content of 90% by volume (5). The 2010 to 2019 mean 
methane intensities for the eight largest US production regions 
(with 2010 to 2019 mean oil/gas production >100 million barrel 
of oil equivalent (BOE) and emission >0.2 Tg a−1) vary from 1.4 
to 8.8%, using reported values of methane content in natural gas 
for individual regions (5). The Bakken and Permian show the 
largest methane intensities of 8.8% and 6.3%, respectively. Both 
are mainly oil-producing regions where much of the by-produced 
gas may be vented or inefficiently flared rather than marketed (57). 
In comparison, gas-dominated regions such as the Marcellus, 
Haynesville, and Fayetteville have much lower methane intensity 
of less than 1.5%, reflecting a stronger motivation for these regions 
to capture the gas for marketing.

We find a steady decrease in the US oil/gas methane intensity 
of −0.13% a−1 (P < 0.01) (relative annual reduction of −0.43% a−1), 
from 3.7% in 2010 to 2.5% in 2019. The 2017 to 2019 emission 
surge was driven by a large increase in production despite a con-
tinued decrease in methane intensity. 6 of the 8 largest oil/gas 
production regions shown in Fig. 4 have decreasing trends in 
methane intensity (Fig. 4B). Among the six smaller production 
regions, Denver-Julesburg also shows a decreasing trend with P < 
0.01, while the others show insignificant trends (SI Appendix, 
Table S4). The Bakken and Permian show large methane intensity 
decreases of −2.3% a−1 and −0.53 % a−1, respectively, effectively 
narrowing the spread of methane intensity across production 
regions.

The decreasing methane intensity in the United States and in 
the major oil/gas production regions reflects a slower increase or 
a decrease in oil/gas methane emissions relative to the increase in 

Fig. 4. 2010 to 2019 methane intensity from the US oil/gas industry. Methane intensity is defined as the total oil/gas emission per unit of gas produced. It 
represents the amount of methane emitted rather than used for fuel (United States) or taken to market (production regions). Panel A shows the year-to-year 
variability. Trends in Panel B are obtained by ordinary least-squares linear regression. Horizontal bars show the ranges from the inversion ensemble.D
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oil/gas production. We find that the 2010 to 2019 oil/gas methane 
intensity trends from all the 14 US regions of Fig. 2 are negatively 
correlated with their respective trends in oil/gas production  
(r = −0.6) and oil/gas production per well (r = −0.4) (SI Appendix, 
Table S4). Production regions with wells that are more mature 
and productive tend to leak less methane per unit production. 
Other small production regions show decreasing methane inten-
sity even with decreasing oil/gas production and less productive 
wells (San Juan and Uinta).

Beyond the dominant role of production trends, we suggest 
that an additional driver for the decreasing methane intensity may 
be the US EPA’s implementation of new source performance 
standards (NSPS) for the oil/gas sector. The NSPS proposed in 
2011 (finalized form in 2012) tightened emission standards for a 
range of production facilities and processes including completions 
of hydraulically fractured gas wells, and pneumatic controllers and 
storage tanks from oil and gas wells (58, 59). The rules were rein-
forced in 2015 (finalized form in 2016) with emission standards 
for additional facilities and processes including hydraulically frac-
tured oil well completions, fugitive emissions from well sites, and 
compressor stations (59, 60). These NSPS rules affected facilities 
that were constructed or modified after the date of the original 
proposals (2011 and 2015).

The Bakken and Permian had large methane intensities in 2010 
to 2014 (8% or higher). They both show large decreases in meth-
ane intensity in 2015 (Fig. 4A) when the NSPS targeted emis-
sions from the new oil production sector (60). Schneising et al. 
(40) previously reported a significant drop of methane intensity 
in Bakken from 2009 to 2011 to 2018 to 2019 and suggested 
that the trend may be driven by industry initiatives for leak detec-
tion and repair, replacement or upgrade of high-emitting devices, 
and reduction of venting or flaring. For the Permian, the US 
EPA’s Greenhouse Gas Reporting Program indicates a 21% 
increase in gathering pipeline miles from its first report year in 
2016 to 2019 (61), and the pipeline takeaway capacity increased 
by ~10% from 2018 to 2019 (earlier data are not available), 
indicating more effective gas capture for marketing (51). This 
may explain the flat emission in the Permian despite large 
increases in oil/gas production after 2016.

Gas-dominated production regions such as the Marcellus and 
Haynesville have much lower methane intensity than the Bakken and 
Permian and also show decreases in methane intensity over 2010 to 
2019. Decreasing methane intensity in the Marcellus, the leading 
shale gas production region in the United States, can likely be attrib-
uted to reduced new well drilling in the second half of the decade and 
new regulations requiring capture of gas from the completion‐venting 
step of hydraulic fracturing (62), though we see a rebound of new 
wells drilled and methane emissions in 2019 (Fig. 3D).

The Anadarko and Barnett stand out as the production regions 
with the largest methane intensities in 2019 and no significant 
decreases over the 2010 to 2019 period. Barnett is a mature shale 
production region with few new wells drilled in 2010 to 2019 (52). 
It shows an increase of methane intensity over 2017 to 2019 for 
reasons that are unclear. Persistent high methane intensity in 
Anadarko is consistent with findings from a previous study (40). 
These two regions would be attractive targets for decreasing methane 
emissions.

Discussion

Even with the overall decreasing trend in 2010 to 2019 methane 
intensity, the United States is still emitting a large amount of oil/gas 
methane concentrated in a few major production regions and with 

no sign of an actual emission decrease since production continues 
to increase. Our best estimate of 15.6 Tg a−1 for US oil/gas emissions 
in 2019, compared to the US EPA estimate of 8.7 Tg a−1, increases 
the United States’contribution to global oil/gas methane emission 
from 15% to 28% if based on UNFCCC reports for other countries 
(9). The United States is committed with 121 other countries to the 
Global Methane Pledge, an initiative to reduce collective methane 
emissions by 30% below 2020 levels by 2030 (63). The US Methane 
Emission Reduction Action has prioritized new actions to reduce 
methane leaked from the oil/gas industry (64). At the same time, 
the US Energy Information Administration projects an increase in 
oil and gas production by 18% and 13%, respectively, in 2030 rel-
ative to 2020 levels in the International Energy Outlook (IEO) 2022 
Reference Scenario (65). If the 2010 to 2019 decreasing trend in 
methane intensity shown in Fig. 4 continues at its current rate (rel-
ative annual reduction of −0.43% a−1), the methane intensity would 
drop to 1.5% by 2030. Applying this methane intensity to the 
increased production in the IEO 2022 Reference Scenario and our 
best emission estimate of 15.6 Tg a−1 for 2019 indicate an US oil/
gas emission of 10.6 Tg a−1 in 2030, 32% lower than 2019 levels, 
and a 15% decrease in total US anthropogenic emissions if other 
sectors taken from the US EPA inventory are assumed constant (12). 
Sustaining such a continued decrease in methane intensity may be 
a challenge as oil/gas fields approach maturity and wells become less 
productive, as is evident in the present-day Barnett (52), and devel-
opment of new oil/gas fields would likely cause the methane intensity 
to increase. New efforts to decrease the methane intensity from oil/
gas production, as outlined in the US Methane Emission Reduction 
Action (64), will be necessary to meet the United States’contribution 
to the Global Methane Pledge.

Materials and Methods

Observations of Atmospheric Methane.
In-situ observations. In-situ methane measurements are from the GLOBALVIEWplus 
CH4 ObsPack product compiled by the National Oceanic and Atmospheric 
Administration (NOAA) Global Monitoring Laboratory (23). We use daily daytime 
(10 to 16 local time) methane mixing ratio at surface and tower measurement sites 
with continuous 10-y records in 2010 to 2019 over North America, composing a total 
of 73,297 data points from 47 sites.
GOSAT satellite retrievals. We use dry column methane mixing rations (XCH4) 
in 2010 to 2019 from the GOSAT satellite instrument produced by the University 
of Leicester version 9.0 Proxy XCH4 retrieval (22). We exclude glint data over the 
oceans and poleward of 60° due to seasonally biased sampling and potentially 
high errors. We obtain a total of 243233 GOSAT retrievals for 2010 to 2019 over 
North America.

Bottom-Up Emissions Used as Prior Estimates for the Inversion. We use 
gridded versions of the national anthropogenic methane emission inventories for 
the United States, Canada, and Mexico reported to the UNFCCC. Spatial allocation of 
these emissions by sector on a 0.1° × 0.1° grid was done by Maasakkers et al. (28) 
for 2012 US emissions based on the 2016 US EPA Greenhouse Gas Inventory, by 
Scarpelli et al. (29) for 2018 Canada emissions based on the 2020 Environment and 
Climate Change Canada report, and by Scarpelli et al. (30) for 2015 Mexico emissions 
based on the 2018 Instituto Nacional de Ecologia y Cambio Climatico report. We use 
the same anthropogenic emissions as prior estimates for all years in the 2010 to 2019 
period, so that emission trends from the inversion are solely driven by observations.

Wetland methane emissions (SI Appendix, Fig. S1D) are from the mean of 
the nine highest-performance members of the WetCHARTs v1.3.1 inventory 
ensemble at 0.5° × 0.5° resolution (31), selected for their fit to the global GOSAT 
inversion results (33). We use 2010 to 2019 mean emissions by month as prior 
estimates in the inversion to avoid introducing prior information on interannual 
variability. Open fire emissions are daily values for individual years from the 
Global Fire Emissions Database version 4s (66). Small constant natural emissions 
are from Etiope et al. (67) scaled to Hmiel et al. (68) for seepages and from Fung 
et al. (69) for termites.
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GEOS-Chem Forward Model Simulation. We use the nested version of 
the GEOS-Chem 12.5.0 chemical transport model (https://doi.org/10.5281/
zenodo.3403111) to simulate the atmospheric methane concentrations and their 
sensitivity to methane emissions. The model is driven by MERRA-2 reanalysis 
meteorological fields (70). We conduct model simulations at 0.5° × 0.625° res-
olution over the North America domain (130-55°W, 15-65°N) for each individual 
year of 2010 to 2019, with the initial and boundary conditions at the edge of 
the domain archived from a global model simulation using posterior methane 
emissions optimized from a global inversion of GOSAT satellite observations 
(25, 32, 33). The boundary conditions capture the global trend of methane con-
centrations over the 2010 to 2019 period but may have errors in interannual 
variability. We therefore choose to optimize the boundary conditions in the four 
directions (east, west, south, and north) for individual years as state vector ele-
ments in the inversion.

Atmospheric Inverse Analysis. The inversion procedure including the design 
of state vector, error estimates, and optimization strategy mostly follows Lu et al. 
(15). We use a Gaussian mixture model (71) to generate 600 Gaussian emission 
functions defined by location, spread, and magnitude in the prior gridded emis-
sions, in order to preserve high (0.5° × 0.625°) resolution for regions with strong 
localized emissions while smoothing the solution in regions of weak emissions. 
The state vector x is then defined as the emission from each of the 600 Gaussians, 
plus the correction to the model boundary conditions as described earlier, for a 
total dimension n = 604.

We solve the optimal estimate of x by minimizing the Bayesian cost function 
J(x):

	
[1]

J(x)=
(

x−xA
)T
SA

−1
(x−xA)+� (y−Kx)TSO

−1
(y−Kx),

where xA is the prior estimate of x , SA is the prior error covariance matrix, y is 
the observation vector, SO is the observation error covariance matrix, K = �y∕�x 
is the Jacobian matrix representing the sensitivity of modeled methane con-
centrations to emissions, and � is a regularization factor to prevent overfitting. 
Minimizing Eq. 1 at ∇xJ(x) = 0 yields an analytical solution for the posterior 
state vector x̂  , its error covariance matrix Ŝ  , and the averaging kernel matrix A:

	 [2]x̂ = xA + (�K TSO
−1K +SA

−1
)−1�K TSO

−1
(y − KxA) ,

 

	

[3]Ŝ = (�K TSO
−1K +SA

−1
)−1,

	
[4]A =

�x̂

�x
= In − ŜSA

−1
.

The inversion returns the posterior estimates of mean emissions and averag-
ing kernel sensitivities for each Gaussian, and these values can then be mapped 
back to the 0.5° × 0.625° grid space.

We construct K, SA, SO and the regularization factor � following Lu et al. 
(15). Our base inversion assumes log-normal error distribution for the prior 
emission magnitude of each Gaussian with a geometric SD of 2 (correspond-
ing to a factor of 2 uncertainty). This allows us to avoid unphysical negative 
posterior emissions (72) and to better capture the heavy tail of the emission 
distribution (5, 7, 21, 73) as compared to previous studies assuming normal 
error distributions.

Evaluation of Posterior Estimate. We evaluate the inversion results by com-
paring the ability of GEOS-Chem simulations with posterior versus prior emis-
sions to fit the observed GOSAT methane columns, the GLOBALVIEWplus CH4 
ObsPack surface/tower observations of methane concentrations, and independent 
ground-based methane column observations at three sites from the Total Carbon 
Column Observing Network (TCCON). SI Appendix, Fig. S7 shows that the posterior 
simulation with optimized emissions and trends significantly reduces the model 
mean bias in US surface and tower measurements from −11 ppb in the prior 
simulation to −6 ppb, and the rms error (rmse) from 22 to 15 ppb. We find that 
there is no decadal trend in the model bias relative to both in situ and GOSAT 
observations in the posterior simulations. The model is biased high at the three 
TCCON sites and this is mostly driven by the Lamont, Oklahoma site, but again 
there is no bias in the trend.

Attributing Posterior Emissions and Trends to Emission Sectors. Our 
inversion returns posterior correction factors ( f0 ) to the total methane emissions in 
individual 0.5° × 0.625° grid cells and for individual years. We apply two methods 
to allocate f0 to correction factors fi for individual sectors i in that grid cell. The first 
method (base estimate) derives fi based on the fraction of sectoral emissions to the 
total prior emissions in the grid cell and the error statistics for that sector given in the 
prior US EPA emission inventory (28), following Shen et al. (34). The second method 
assumes that the prior sectoral distribution of emissions in the grid cell is correct and 
that the posterior scaling factors apply equally to all sectors in the grid cell ( fi = f0).

We examined the ability of the inversion to quantify oil/gas emissions in indi-
vidual production regions separately from other sources (such as livestock) in those 
regions. This was done by transforming the posterior full-dimension state vector x̂  
to a reduced state vector x̂red , with sectoral methane emissions aggregated over the 
defined region as elements. We can then use the corresponding posterior error covar-
iance matrix Ŝ red to quantify the ability of the inversion to separate emissions from 
different sectors within the region. Further details on this approach are in the study 
by Maasakkers et al. (74). We find that we can successfully separate oil/gas emissions 
from other sectors in the United States and in most of the major oil/gas production 
regions as indicated by the small posterior error correlation coefficients for all sector 
pairs (SI Appendix, Fig. S8). However, separating oil from gas emissions can be chal-
lenging for some regions and we only report combined oil/gas methane emissions.

Uncertainty of the Posterior Estimates. Our analytical inversion returns the 
closed-form posterior error covariance matrix ̂S  (Eq. 3) which can be used to exam-
ine the uncertainty of the posterior emissions. However, Ŝ  does not reflect the 
uncertainty in the inversion parameters. We derive an alternative estimate of the 
uncertainty based on the range of posterior emissions from a 24-member inver-
sion ensemble including different forms and values of SA , different values of the 
regularization parameter � , and different sectoral attribution methods (SI Appendix, 
Table S1). Generation of this ensemble is immediate since all members use the 
same Jacobian matrix K. SI Appendix, Fig. S9 compares the uncertainties estimated 
from Ŝ  and from the inversion ensemble for the year 2015. We find that the emis-
sion uncertainty defined by the range of the inversion ensemble is generally larger 
than the error inferred from the diagonal of ̂S  except for small production regions, 
consistent with the finding in the study by Chen et al. (75). We therefore mainly 
use the 24-member range in the inversion ensemble to characterize uncertainty, 
but report uncertainty from Ŝ  where applicable (e.g., when describing a single 
inversion result or when uncertainty from Ŝ  is larger than the ensemble range).

SI Appendix, Fig. S4 shows the range of posterior oil/gas emissions from the 
24-member ensemble (SI Appendix, Table S1) in the United States and the three 
largest basins (Permian, Anadarko, and Marcellus). We find that assuming a log-nor-
mal error distribution (inversions #1-6) for prior emission rather than a normal dis-
tribution (inversions #7-12) typically results in higher posterior emission estimates, 
by better capturing the observed heavy tail of the emission probability density 
functions. Assuming a larger prior error allows stronger upward correction of oil/gas 
emissions. Using a source-dependent f i attributes more upward correction to oil/
gas emissions as the oil sector has larger uncertainty in the gridded EPA emission 
inventory (28). Reducing the weight of GOSAT observations decreases the ability 
to optimize methane emissions but has relatively little impact on the magnitude. 
The year-to-year variability is in general consistent across the inversion ensemble.

Data, Materials, and Software Availability. Data  (.csv/.nc/.sav)  have been 
deposited in GitHub (https://github.com/luxiaoatchemsysu/Data-USoilgasCH4) (76).
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